Request Setup and Environmental Context

From Code4Lib
Revision as of 19:53, 27 July 2008 by (Talk) (OpenURL parsing and storing)

Jump to: navigation, search

Setting up the Request and it's context

Part of Umlaut Technical Overview

OpenURL parsing and storing

In understanding Umlaut, it's helpful to understand a bit about the nature of an OpenURL, including that an OpenURL is composed of several entities or groupings of metadata. Jeff Young's Q6 blog includes one good explanation of the six OpenURL entities.

Two sets of classes are involved in dealing with OpenURLs in Umlaut. The ropenurl library is generally used to parse OpenURLs. However, Umlaut serializes OpenURLs to it's own ActiveRecord classes--Request, to represent an incoming OpenURL request, and some constituent data in Referrent, Referent Value, and Referrer.

Once the OpenURL is parsed with the ropenurl library, the data is stored in these internal Umlaut classes, which are generally used subsequently to deal with the request data.

A bit confusingly, Umlaut's own Request (an ActiveRecord which represents a parsed OpenURL request, and other persistent state related to Umlaut's handling of that OpenURL request) should not be confused with the Rails ActionController::Request class (which represents the complete details of the current 'raw' HTTP request, and is not stored persistently in the db).

So the first thing the resolve action does is pass the incoming HTTP request details to the Umlaut Request#new_request method, which will 'either' create a new Request, or recover an already created Request from the db--in either case return a Request matching the OpenURL.

Request caching/re-use

The point of this re-use of Request objects is that if the user presses the browser reload button, the app should be connected with the same already created request--allowing the same already generated responses to be used, among other things. This also allows the user to click on various Umlaut functions and keep re-using the same Request. Again, the main reason this is important is to re-use already generated responses instead of re-generating them. This is also important for background service processing.

Cache matching for re-use is based on: Must be from the same session, must be from the same originating IP address, must have the same OpenURL elements (ie, same OpenURL parameters measured by a serialized version (Request#serialized_co_params)).

Alternately, if the request ID is passed in (in query var "umlaut.request_id"), that is used instead of context object element matching. Umlaut often passes requestID internally, to make sure the same request is recovered. If request_id matches, sessions is not required to match--this is intentional to recover the request even if browser isn't returning cookies, thus not connecting to same session.

Building the service Collection: Institutions and Services

So we've got the request taken care of. What are we going to do with it?


The actions taken in response to a request (to 'resolve' it and provide information to the client or user) are taken in umlaut by Services. A Service is defined in your local configuration in $umlaut/config/umlaut_config/services.yml. A sample services.yml file is included in $umlaut/config/umlaut_distribution/services.yml-dist.

Each service defined in services.yml has at minimum three properties: An unique identifier for that service, a priority level, and a "type".

The "type" is the name of an 'adaptor' class implementing the logic for this service. Service adaptor classes are stored in $umlaut/lib/service_adaptors. (We will extend this in the future to allow locally defined service_adaptors, perhaps in $umlaut/lib/service_adaptors/local ). So there's a service_adaptor for Amazon, for worldcat, etc. Most importantly, there's one for SFX---SFX connectivity is achieved through defining a service that uses a 'type' that talks to an SFX server , just like other services. (At least for 'resolve' actions; 'search' actions are a bit different).

Priority defines what order the services will be run in. 1-9 are foreground services ordinarily executed before a response is returned to the user. a-z are background services run after a response is returned to the user. Two services sharing the same priority will be run concurrently (but see the config.app_config.threaded_services config param).

Services defined in services.yml may have other service-specific parameters too, for instance commonly a password or api_key giving you access to the foreign web service.

Note that a Service is not actually an ActiveRecord stored in the db. Instead, it is a definition in services.yml, which involves an adaptor class (which is not an active record). Service definitions are loaded in on demand--and their adaptor classes instantiated--by the ServiceList singleton class.

For more on how to write service adaptor classes to implement new services, see.... TBD.


Services are grouped together in Institutions. An Institution represents some particular class of user. It could be a particular location or affiliation, but it really could be any other class of user too.

Institutions are defined in $umlaut/config/umlaut_config/institutions.yml (sample in config/umlaut_distribution/institutions.yml-dist ). An Institution definition is basically a unique identifier and a list of services attached to that institution.

While Institutions are defined in the institution.yml config file, certain attributes of the Institution are ALSO stored in the database for quicker lookup (This may or may not make sense, but is a legacy design). After editing the institution.yml file, a rake task should be run to sync the info to the db too:

rake umlaut:sync_institutions

The Insitution ActiveRecord automatically loads in properties stored in the institutions.yml, helped out by the InstitutionList store class.

Hypothetically, there will be many ways for a given incoming request to get associated with an Institution: by IP range, by user preference, by attribute from an enterprise directory associated with a user account, etc. An incoming user can be associated with one or more institutions.

However, at present, pretty much the only way for a user to be associated with an Institution is if it's a default Institution! So the only Institutions are default Institutions at present (there can be more than one default institution). This architecture has room for expansion.


So there are Services, and they are grouped into Institutions. How do they actually get brought into play to respond to a resolve request? The Collection object. A Collection keeps track of a bunch of services to be used for a given session.

The resolve index action creates a new Collection based on ip address and other session information. The new Collection will discover which Institutions apply to a user, and which Services belong to that Institution, and file them all by priority. Other Services may be found that do not belong to an Institution, for instance Collection is supposed to identify SFX servers for a user's IP addr via the Worldcat Registry, create a Service pointing to that foreign SFX server, and include that in a Collection. Although this functionality may not be working at present.

The Collection is stored in the Session. It is not actually an ActiveRecord, instead it is stored serialized in the Session--along with all it's Services. One catch to this is if you change Service configuration in services.yml, users may still be getting the old configuration from their serialized Collection in their Session. Deleting all Sessions is a good idea to handle this. (Deleting sessions ought not to interfere with anyone's activity in progress, except to uncache certain things).

The stored Collection will not be used if a user's IP address changes--even if they have the same session. For instance, bringing your laptop to a new location will still cause a Collection to be rebuilt.

When the resolve action wants to actually execute services, it goes through each priority level, and asks the Collection for the Services at that priority level.